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Instituto de Ffsica, Universidad Nacional Aut6noma de M6xico,
Circuito de la Investigaci6n Cientifica, Ciudad Universitaria,
M6xico, DF, 04510, M6xico.

ABSTRACT
We present a theoretical study of the modification of Casimir forces between
nanocomposite slabs that exhibit a metal-dielectric transition. In particular, we consider
slabs made of V0 2 precipitates in sapphire, whose effective dielectric function is calculated
within a mean field approximation. The results for the Casimir force as a function of the
separation of the slabs, show that at a fixed separation the magnitude of the force changes
as temperature increases from 300 K to 355 K. The possible applications of these results to
Casimir devices is discussed.

INTRODUCTION
In 1948 Casimir [ I ] showed that two parallel plates separated by a distance a and made

of a perfect conductor will attract each other with a force per unit area given by

7T2hc
F 240a4(1)

This force is attributed to the quantum vacuum fluctuations of the electromagnetic field.
Indeed, Casimir forces appear whenever the mode distribution of a fluctuating field is
modified by the P resence of boundaries [2]. Although Casimir forces are small (0.13
dynes for 1 mm plates separated by one micron) they have been measured through a series
of ingenious experiments. Lamoreaux [3] reported an agreement with theory at the level of
5% using an electromechanical system based on a torsion balance. More recent
experiments performed by Mohideen with atomic force microscopes achieved precisions
close to 1% [4]. In another experiment, a micromachined torsional device was employed to
measure the Casimir attraction between a plate and a spherical metallic surface [5].
The original formulation of Casimir was for perfect conductors motivating Lifshitz to
propose in 1956 a theory for vacuum forces between semi-infinite dielectric media [6].
The corresponding theory for finite dielectric systems has been developed in last few years
[7].

With the advent of novel experimental techniques associated to the development of
micro electromechanical systems (MEMS), and instruments such as the atomic force
microcope (AFM) different proposals related with the technological uses of the Casimir
forces have been investigated. For example, the deflection of a thin microfabricated
rectangular strip due to Casimir forces was calculated by Serry et al. [8]. According to
their results, the strength of these forces is high enough as to buckle the strip and limit the
operation of MEMS. Maclay [9] has also suggested to build MEMS devices in order to
study the properties and energy balance of MEMS when static or vibrating membranes are
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placed on the top of open rectangular cavities. The proposed experimental configuration
consists of an array of open rectangular metallic cavities. A top plate suspended by
micromecanical springs may be used to measure the sign and magnitude of the Casimir
interaction between the plate and the cavity array.

In a recent paper [10], we discussed the possibility of controlling the strength of Casimir
forces using heterostructures made of materials with different dielectric properties such as
metals and semiconductors. This kind of structures would be also useful in the building of
Casimir engines in which part of the energy cycle could be driven by the Casimir
interactions. Such a cycle has been proposed by Pinto [11] in order to design a vacuum
energy transducer, using optically active elements. He estimated that the power per unit
area of this Casimir engine could be as high as I kW/m 2. Based on these ideas, in this
work we study a system made of nanocomposite slabs that exhibit a metal-dielectric
transition. In particular, we consider slabs made of VO2 precipitates in sapphire [ 12], whose
effective dielectric function is calculated within a mean field approximation. These
nanocomposites undergo a first order phase transition which changes their dielectric
response from semiconducting to metallic.
This behavior would allow to build devices in which the Casimir forces could be modified
not only by changing the separation between the slabs, but also by temperature variations
as we show in this paper.

THEORY

Consider two parallel slabs made of a dielectric of thickness d and separated by a distance
a. The Casimir force between dielectric media considering only wave vectors
perpendicular to the slabs is given by [7]

S1 -1" t)) 12

F zk= l Re f d 4 Ii - 12] (2)

where the r(o)) is the frequency-dependent reflection coefficient. To calculate 7(0)) the
dielectric function of the slabs is needed. For a nanocomposite slab made of a host material
with a dielectric function cj,(o) and inclusions with dielectric function el(o)), the effective
dielectric response rM(.o) can be calculated within a mean field approximation as [13]

=1+ 3fa+ f 2a 213+ 2log 8+a 1 (3)
-0/1 8-2a

wheref is the volume fraction of the inclusions and ox is the effective polarizability given
by the Maxwell Garnett theory. This expression for the effective dielectric function
includes higher order corrections in the volume fraction and is a first approximation beyond
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single particle mean field theories. To model the dielectric function of the V0 2 precipitates
embbeded in sapphire we considered a Lorentz model for both e,('O) (sapphire) and Ei((0)
(V0 2). The parameters appearing in Lorenz formula for these materials have been taken
from Ref. [14]. In the case of V0 2 , these parameters change as a function of temperature
due to the phase transition.

RESULTS

The system we study consists of two parallel planar nanocomposite slabs separated a
distance a and with a thickness of d=0.1 microns. The volume fraction of the V0 2
precipitates was arbitrarily set at 20 %. In figures (I a) and (I b), we present the real and
imaginary parts of the dielectric function as calculated from Eq.(3). The dielectric function
is shown for two different temperatures, T.2 = 300 K, and , T,, = 355 K. The first
temperature corresponds to the semiconducting state, and the second to the metallic one.
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Figure 1. (a) Frequency dependence of the real part of the effective dielectric function for
the semiconducting (T,, = 300 K) and metallic phases (T,, = 355 K). (b) Frequency
dependence of the imaginary part of the effective dielectric function for the semiconducting
(T~c = 300 K) and metallic phases (Tm = 355 K).

In figure (2) we present the calculated reflectance of a nanocomposite slab for the
semiconducting and metallic phases based on our results for cM(CO) . The metallic case
shows a significant deviation with respect to the semiconducting one at an angular
frequency of 1.5 x 10 15 Hz. The changes in r(co) as a function of temperature should be
reflected in the calculation of the Casimir force. This is indeed the case, as shown in figure
(3) where we plot the force as a function of the separation a. The force is normalized to the
ideal case. The ideal case is when the slabs are made of a perfect conductor. As shown in
the figure, after a separation of roughly 0.3 gtm the magnitude of the force is different. This
is understood from Eq. (2) since at a given separation of the slabs the modes that will
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contribute more to the force are those with a wavelength that fit within the slabs. This is,
modes with a frequency of aýrr/a. The region of small separations (a<0.2 Pm) the force
is the same at the two temperatures since these separations correspond to frequencies at
which the reflectivity of the material is very small and the mode density within the slabs is
similar to that of vacuum resulting in a negligible Casimir force.
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Figure 2. Frequency dependence of the reflectance of the nanocomposite slab at Tf0,
and T,,. In the frequency region around 1.5x 105 Hz the reflectance differs at the two
temperatures.
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Figure 3. Casimir force as a function of the nanocomposite slab separation a. The dashed
curve corresponds to the metallic phase, while the continuous one corresponds to the
semiconducting phase. The force is normalized with respect to the perfectly conducting
case given by equation (1).

CONCLUSIONS

We have explored the possibility of using the dielectric properties of nanocomposite
slabs that exhibit a metal-dielectric transition to modulate the Casimir forces. In this work,
we considered slabs made of V0 2 precipitates in sapphire. The results for the Casimir force
as a function of the separation of the slabs show that at a fixed separation the magnitude of
the force changes as temperature increases from 300 K to 355 K. This effect could be used
in principle, as part of a thermodynamic cycle of a micromachined motor similar to the one
proposed by Pinto [11] but working at ambient temperature.
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